IDENTIFICATION, USING ISOENZYME ELECTROPHORESIS AND MONOCLONAL ANTIBODIES, OF LEISHMANIA ISOLATED FROM HUMANS AND WILD ANIMALS OF ECUADOR

TATSUYUKI MIMORI, GABRIEL GRIMALDI, JR., RICHARD D. KREUTZER, EDUARDO A. GOMEZ, DIANE MCMAHON-PRATT, ROBERT B. TESH, AND YOSHIHISA HASHIGUCHI

Department of Parasitic Diseases, Kumamoto University Medical School, Kumamoto, Japan, Department of Immunology, Instituto Oswaldo Cruz, Rio de Janeiro, Brazil, Biology Department Youngstown State University, Youngstown, Ohio, Departamento de Parasitologia, Instituto Nacional de Higiene y Medicina Tropical, Guayaquil, Ecuador, Department of Epidemiology and Public Health, Yale University School of Medicine, New Haven, Connecticut, Department of Parasitology, Kochi Medical School, Kochi, Japan

Abstract. Six strains of *Leishmania* isolated from wild mammals and humans on the Pacific Coast of Ecuador were identified by isoenzyme electrophoresis and by their reactivity patterns to a cross-panel of specific monoclonal antibodies using a radiimmune binding assay. Single isolates from *Sciurus vulgaris*, *Potos flavus*, and *Tamandua tetradactyla* were identified as *Leishmania amazonensis*. Three other strains, isolated from cutaneous lesions of humans, were identified as *Leishmania panamensis*.

New World leishmaniases are widely distributed in Central and South America, where they present a considerable public health problem.\(^1,2\) Parasites causing these cutaneous, mucocutaneous, and visceral leishmaniases have been characterized and identified by isoenzyme electrophoresis, monoclonal antibodies, and kinetoplast DNA.\(^3-5\) Since the first human case of leishmaniasis was described in Ecuador in 1920, many additional cases of the disease have been reported.\(^6\) *Leishmania* parasites have been isolated from 3 mammalian species in the country.\(^7\) Until now, however, the identification and taxonomy of these Ecuadorian parasites have been based mainly on their clinical manifestations in humans, epidemiological features, and differing growth patterns in the hamster and in vitro. It is difficult to identify parasites solely on these criteria. Recently, we compared selected *Leishmania* isolates from Ecuador with well characterized WHO reference strains using isoenzyme electrophoresis and monoclonal antibodies. The present paper gives the results of these studies.

MATERIALS AND METHODS

Parasites examined

Six Ecuadorian *Leishmania* strains were selected for study: strain MSCI/EC/87/G-02 isolated from a liver and spleen homogenate of a squirrel (*Sciurus vulgaris*) captured in Palenque, Department of Los Ríos; strain MPOT/EC/87/G-03 from a liver and spleen homogenate of a kinkajou (*Potos flavus*) collected in Palenque, Department of Los Ríos; strain MTAM/EC/87/G-04 from a liver and spleen homogenate of an anteater (*Tamandua tetradactyla*) captured in Echeandia, Department of Bolívar; strain MHOM/EC/87/G-05 from a skin ulcer of a human in Quininde, Department of Esmeraldas; strain MHOM/EC/87/G-06 from a skin lesion of a patient in Zapallo Grande, Department of Esmeraldas; and strain MHOM/EC/87/G-07 from a cutaneous lesion of a human in Santo Domingo de los Colorados, Department of Pichincha. The circumstances of these parasite isolations have been described previously.\(^7,8\)

The 6 Ecuadorian isolates were compared with the World Health Organization (WHO) reference strains of New World *Leishmania* listed in Table 1.

Isoenzyme electrophoresis

Cultivation procedures for the promastigotes, preparation of extracts, enzyme activities, and electrophoresis procedures have been reported previously.\(^9-12\) The isolates were characterized twice for up to 17 enzymes, including the 3 enzymes that can accurately identify parasites in
<table>
<thead>
<tr>
<th>Stock Code</th>
<th>Species</th>
<th>M2</th>
<th>M3</th>
<th>M7</th>
<th>M9</th>
<th>M11</th>
<th>B3</th>
<th>B4</th>
<th>B11</th>
<th>B16</th>
<th>B18</th>
<th>B19</th>
<th>D3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference strains</td>
<td></td>
</tr>
<tr>
<td>MHOM/BR/73/M2269</td>
<td><em>L. amazonensis</em></td>
<td>34.5</td>
<td>22.6</td>
<td>6.8</td>
<td>26.0</td>
<td>34.1</td>
<td>1.9</td>
<td>0.9</td>
<td>1.8</td>
<td>1.3</td>
<td>1.4</td>
<td>1.5</td>
<td>1.2</td>
</tr>
<tr>
<td>MORY/PA/68/GML3</td>
<td><em>L. aristides</em></td>
<td>16.9</td>
<td>0.7</td>
<td>2.9</td>
<td>21.8</td>
<td>27.7</td>
<td>--</td>
<td>--</td>
<td>1.0</td>
<td>1.0</td>
<td>2.3</td>
<td>1.0</td>
<td>0.5</td>
</tr>
<tr>
<td>MNYC/BZ/62/M379</td>
<td><em>L. mexicana</em></td>
<td>1.7</td>
<td>1.8</td>
<td>26.3</td>
<td>4.9</td>
<td>6.6</td>
<td>--</td>
<td>--</td>
<td>1.5</td>
<td>2.0</td>
<td>1.4</td>
<td>1.7</td>
<td>1.1</td>
</tr>
<tr>
<td>MHOM/PA/71/LS94</td>
<td><em>L. panamensis</em></td>
<td>1.5</td>
<td>0.9</td>
<td>1.4</td>
<td>0.9</td>
<td>1.7</td>
<td>26.0</td>
<td>9.0</td>
<td>12.2</td>
<td>2.5</td>
<td>1.0</td>
<td>1.2</td>
<td>0.5</td>
</tr>
<tr>
<td>MHOM/BR/75/M2903</td>
<td><em>L. braziliensis</em></td>
<td>2.0</td>
<td>1.3</td>
<td>2.4</td>
<td>1.3</td>
<td>1.3</td>
<td>70.5</td>
<td>0.9</td>
<td>1.2</td>
<td>27.8</td>
<td>34.5</td>
<td>2.0</td>
<td>1.4</td>
</tr>
<tr>
<td>MHOM/BR/75/M4147</td>
<td><em>L. guyanensis</em></td>
<td>1.2</td>
<td>1.8</td>
<td>1.0</td>
<td>2.0</td>
<td>2.8</td>
<td>1.2</td>
<td>1.3</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>13.2</td>
<td>0.7</td>
</tr>
<tr>
<td>MHOM/BR/74/PF75</td>
<td><em>L. chagasi</em></td>
<td>0.4</td>
<td>0.4</td>
<td>0.7</td>
<td>0.4</td>
<td>1.2</td>
<td>0.9</td>
<td>1.0</td>
<td>1.0</td>
<td>0.7</td>
<td>0.6</td>
<td>13.0</td>
<td></td>
</tr>
<tr>
<td>Ecuadorian isolates</td>
<td></td>
</tr>
<tr>
<td>MSCI/EC/87/G-02</td>
<td><em>L. amazonensis</em></td>
<td>18.1</td>
<td>4.4</td>
<td>4.7</td>
<td>10.7</td>
<td>19.0</td>
<td>--</td>
<td>1.5</td>
<td>1.4</td>
<td>1.2</td>
<td>1.2</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>MPOT/EC/87/G-03</td>
<td><em>L. amazonensis</em></td>
<td>31.5</td>
<td>11.3</td>
<td>11.2</td>
<td>25.4</td>
<td>31.8</td>
<td>--</td>
<td>--</td>
<td>1.5</td>
<td>1.2</td>
<td>1.1</td>
<td>1.3</td>
<td>1.2</td>
</tr>
<tr>
<td>MTAM/EC/87/G-04</td>
<td><em>L. amazonensis</em></td>
<td>33.8</td>
<td>12.6</td>
<td>9.9</td>
<td>25.6</td>
<td>37.9</td>
<td>--</td>
<td>1.4</td>
<td>1.2</td>
<td>1.0</td>
<td>1.2</td>
<td>1.7</td>
<td></td>
</tr>
<tr>
<td>MHOM/EC/87/G-05</td>
<td><em>L. panamensis</em></td>
<td>4.1</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>12.7</td>
<td>13.2</td>
<td>12.6</td>
<td>1.6</td>
<td>2.0</td>
<td>3.0</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>MHOM/EC/87/G-06</td>
<td><em>L. panamensis</em></td>
<td>1.5</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>15.7</td>
<td>14.9</td>
<td>10.4</td>
<td>1.3</td>
<td>2.0</td>
<td>3.0</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>MHOM/EC/87/G-07</td>
<td><em>L. panamensis</em></td>
<td>3.0</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>32.9</td>
<td>30.3</td>
<td>27.8</td>
<td>1.0</td>
<td>0.8</td>
<td>2.3</td>
<td>--</td>
<td></td>
</tr>
</tbody>
</table>

* Ratio cpm bound monoclonal antibodies/cpm bound control; values >3 were considered positive.
† From hybridoma clones: M2, IX-207-E10; M3, IX-318-C10; M7, LXVIII-1D7-B8; M9, XLV-2B5-H7; M11, XLV-1D11-E11; B3, VI-4D10-D12; B4, VI-2A5-A4; B11, VI-5G3-F3; B16, XIII-3E6-B11; B18, XIV-2A5-A10; B19, XLV-5A2-B9; D3, LXXVIII-1F2-A2.
ia was performed with an indirect radioimmune binding assay using whole parasite lysates as antigen. Round bottom, 96-well polyvinylchloride plates were coated overnight at 5°C with sonicated homogenates of whole promastigotes which were diluted in PBS containing 0.02% sodium azide (NaN₃). The plates were washed 5 times and blocked with PBS containing 0.02% NaN₃ and 2% FBS. Culture medium supernatants, containing secreted antibodies, were incubated with the antigen plates overnight at 5°C. After washing, affinity-purified ¹²⁵I labeled rabbit F(ab')₂ anti-mouse immunoglobulin (10⁷ cpm; 5-10 μCi/μg protein) was added to the wells and incubated for 1 hr at 0°C. Excess antibody was removed by washing. The plates were air dried and the radioactivity bound to each well was measured using a Packard Auto-Gamma Counter.

**Parasite classification**

Identification of parasites in this study have followed the simplified nomenclature for the genus *Leishmania*, suggested by Sáf'janová¹⁵ and Shaw and Lainson¹⁶ and used by the International Colloquium at Montpellier, France, 2–6 July 1984.¹⁶

**RESULTS**

**Isoenzyme electrophoresis**

The 3 isolates from wild mammals, MSCI/EC/87/G-02, MPOT/EC/87/G-03, and MTAM/EC/87/G-04, had identical allomorphs (bands of enzyme activity observed by electrophoresis) to each other and to the WHO *L. amazonensis* reference strain (MHOM/BR/73/M2269) for the enzymes GPI, MPI, and 6PGDH (Fig. 1). The latter enzymes are used to separate most *Leishmania*¹¹ and indicate that the aforementioned isolates are *L. amazonensis*. The 3 isolates from humans, MHOM/EC/87/G-05, MHOM/EC/87/G-06, and MHOM/EC/87/G-07, were similar to each other and to the WHO *L. panamensis* reference strain, MHOM/PA/71/LS94, for the same enzymes. These 3 isolates were polymorphic (more than 1 allomorph in the population) for 6PGDH. The Ecuadorian isolates were also tested for as many as 17 additional enzymes; the data from these enzymes confirmed the original species designations.

**Monoclonal antibodies and indirect radioimmune assay**

The monoclonal antibodies used in this study, specific for members of the *L. braziliensis*, *L. mexicana* and *L. donovani* complexes, have been described.¹³-¹⁶ The promastigotes were cultured in Schneider's medium with 15% fetal bovine serum (FBS). Characterization of the *Leishmania*
Monoclonal antibodies

The reactivity of monoclonal antibodies of the 6 Ecuadorian Leishmania strains and the WHO reference strains are shown in Table 1. Monoclonal antibodies, previously shown to have a high and consistent qualitative specificity for members of the L. mexicana or L. braziliensis complex, reacted with the Ecuadorian isolates. The reactive patterns of isolates MPOT/EC/87/G-03, MTAM/EC/87/G-04, and MSCVI/EC/87/G-02 were similar to that of the L. amazonensis reference strain, MHOM/BR/73/M2269.

The reactive patterns of the human isolates, MHOM/EC/87/G-05, MHOM/EC/87/G-06, and MHOM/EC/87/G-07, were very similar to that of the L. panamensis reference strain (Table 1). On the basis of these results, the latter strains were identified as L. panamensis.

DISCUSSION

Six Ecuadorian Leishmania strains were identified to the species level by isoenzyme electrophoresis and monoclonal antibodies. The 3 strains isolated from human skin lesions were identified as L. panamensis. The 3 parasites recovered from viscera of wild mammals were identified as L. amazonensis.

A variety of molecular and biochemical methods have been used to identify and to characterize Leishmania parasites. Isoenzyme electrophoresis has been commonly used to identify Leishmania parasites at species and subspecies levels. A newer approach for parasite characterization and identification is the indirect radiopaque binding assay-monoclonal antibody technique. The high specificity of some monoclonal antibodies permits Leishmania parasite identification and provides evidence for the stability of intrinsic molecular characters of the parasite. Further, the results of parasite identification using monoclonal antibodies parallels those of isoenzyme electrophoresis and kinetoplast DNA.

This is the first report on the characterization and identification of parasites isolated from Ecuador. Parasites isolated from humans living on the Pacific Coast of Ecuador were identified as L. panamensis. The ecology of this region is similar to that of the Pacific Coast of Colombia, where this same species is highly endemic.

A new finding of this study was L. amazonensis visceral infection in S. vulgaris, P. flavus, and T. tetractyla captured near the sites where the human isolates of L. panamensis isolates were obtained. In these regions, therefore, there are probably at least 2 causative agents of human leishmaniasis, L. panamensis and L. amazonensis. Other Leishmania parasites were also isolated from 3 species of mammals caught in Narinjal, Department of Guayas, Ecuador. These parasites appear to be different from the currently well established New World Leishmania.

Acknowledgments: We thank F. Parra Gil and V. V. de Coronel for their encouragement, and express our appreciation to our collaborators in the Instituto Nacional de Higiene y Medicina Tropical, Guayaquil, Ecuador.

Grant support: Overseas Scientific Research Program of the Ministry of Education, Science and Culture, Japan, grant 61041059; Japan-U.S. Cooperative Medical Science Program; UNDP/World Bank/WHO Special Programme for Research and Training in Tropical Diseases; the National Institutes of Health of the United States, grants AI 20108 and AI 21049.

Authors' addresses: Tatsuyuki Minori, Department of Parasitic Diseases, Kumamoto University Medical School, 2-2-1 Honjo, Kumamoto 860, Japan. Gabriel Grimaldi, Jr., Department of Immunology, Instituto Oswaldo Cruz, Rio de Janeiro, Brazil. Richard D. Kreutzer, Biology Department, Youngstown State University, Youngstown, OH. Eduardo A. Gomez, Departamento de Parasitologia, Instituto Nacional de Higiene y Medicina Tropical, Guayaquil, Ecuador. Diane McMahon-Pratt and Robert B. Tesh, Department of Epidemiology and Public Health, Yale University School of Medicine, 60 College Street, P.O. Box 3333, New Haven, CT. Yoshitaka Hashiguchi, Department of Parasitology, Kochi Medical School, Kochi, Japan.

REFERENCES


