Weight Enumerators of Codes over $\mathbf{Z}/2k\mathbf{Z}$

Manabu Oura

In this note, we announce some results in [1].

1 Codes over $\mathbf{Z}/2k\mathbf{Z}$ and lattices

We set $R := \mathbf{Z}/2k\mathbf{Z}$. A linear code C of length n over R is an additive subgroup of R^n. The Euclidean weight $\text{wt}_E(x)$ of a vector $x = (x_1, \cdots, x_n)$ is $\sum_{i=1}^n x_i^2 \mod 4k$. We define the inner product of x and y in R^n by $\langle x, y \rangle = x_1y_1 + \cdots + x_ny_n \mod 2k$, where $x = (x_1, \cdots, x_n)$ and $y = (y_1, \cdots, y_n)$. The dual code C^\perp of C is defined as

$$C^\perp = \{ x \in R^n | \langle x, y \rangle = 0, \forall y \in C \}.$$

C is self-dual if $C = C^\perp$. We define a Type II code over R as a self-dual code with Euclidean weights divisible by $4k$. We consider the natural projection ρ from \mathbf{Z}^n to R^n, then this map induces the map (also we denote ρ) from \mathbf{Z}^n to R^n. We set $\Lambda(C) = \frac{1}{\sqrt{2k}} \rho^{-1}(C)$.

Theorem 1 If C is self-dual code of length n over R, then the lattice $\Lambda(C)$ is an n-dimensional unimodular lattice. Moreover if C is Type II, then the lattice $\Lambda(C)$ is an even unimodular lattice.

Proposition 2 There exists a Type II code of length n over R if and only if n is a multiple of eight.

Remark 3 For $k = 2$, Type II codes of lengths 8 and 16 are classified.

2 Weight enumerators and modular forms

Definition 4 For a code C over R, we define the g-th complete weight enumerator of C by

$$\mathcal{E}_C^g(x_a \text{ with } a \in R^g) := \sum_{C_1, \cdots, C_g \in C} \prod_{a \in R^g} \prod_{a \in R^g} x_a^{n_a(c_1, \cdots, c_g)}$$

where $n_a(c_1, \cdots, c_g)$ denotes the number of i satisfying $a = (c_1, \cdots, c_g)$.

We define a relation \sim in R^g by

$$a \sim b \iff a = b \text{ or } a = -b,$$

where $a, b \in R^g$. We set $\overline{R^g} := R^g / \sim.$
Definition 5 For a code C over R, we define the g-th symmetrized weight enumerator of C by

$$S^g_C(y_a) := \sum_{c_1, \ldots, c_g \in C} y_a^{n_\pi(c_1, \ldots, c_g)},$$

where $n_\pi(c_1, \ldots, c_g)$ denotes the number of i satisfying $\pi = (c_i, \ldots, c_g)$.

We consider the following procedure ϕ: for $g = (g_{ab})_{a,b \in R^g}$, we set

$$\phi(g) := \sum_{d \in R^g_{2k}} g_{ad}^{\phi} \cdot \prod_{d=b} \pi_{d, b}^{\pi}.$$

Theorem 6 For a code C over R, we have

$$C^g_C(x_a) = \frac{1}{|C|^g} T \cdot C^g_C(x_a),$$

and

$$S^g_C(x_a) = \frac{1}{|C|^g} \phi(T) \cdot S^g_C(x_a),$$

where $T = (\eta_{2k})_{a,b \in R^g}$.

For a symmetric integral matrix S of size $g \times g$, we define $D_S := \text{diag}(\eta_S^{[a]} \text{ with } a \in R^g)$.

Let us define

$$G^{S_8}_{g,k} := \left\langle \left(\frac{\eta_S}{\sqrt{2k}} \right)^g T, D_S, \eta_S \right\rangle,$$

$$H^{S_8}_{g,k} := \left\langle \left(\frac{\eta_S}{\sqrt{2k}} \right)^g \phi(T), \phi(D_S), \eta_S \right\rangle,$$

where S runs over all symmetric integral matrices of size $g \times g$ and η_8 denotes the primitive 8-th root of unity.

Theorem 7 For any Type II code C over R, the g-th complete (resp. symmetrized) weight enumerator is invariant under the action of the group $G^{S_8}_{g,k}$ (resp. $H^{S_8}_{g,k}$).

We define the thetas $f^{(k)}_a(\tau)$ by

$$f^{(k)}_a(\tau) := \sum_{x \in R^g} e^{2\pi i k x^T [x + \frac{1}{2} a]}, a \in R^g, \tau \in H_g$$

where H_g denotes the Siegel upper half space of degree g.

The theta for a lattice L in genus g is denoted by

$$\theta_L^g(\tau) := \sum_{x_1, \ldots, x_g \in L} \Pi_{1 \leq i,j \leq g} e^{\pi i <x_i, x_j> \tau_{ij}}, \tau = (\tau_{ij}) \in H_g$$

Because of the identity $f^{(k)}_a(\tau) = f^{(k)}_a(\tau)$, we may define $f^{(k)}_a(\tau) := f^{(k)}_a(\tau)$. Direct computation shows

$$\theta_\tau^g(f^{(k)}_a(\tau)) = \theta_\tau^g(f^{(k)}_a(\tau)) = \theta_\tau^g(\eta_a(\tau)).$$

In particular, we have

Theorem 8 For any Type II code C, $\theta_\tau^g(f^{(k)}_a(\tau))$ is a Siegel modular form of weight $n/2$ for the Siegel modular group $\Gamma_g = S_{P_{2g}}(Z)$.
3 Dimension formulas

In this section, we discuss the dimension formulas of the invariant rings of $G_{1,2}^8$ and $H_{1,2}^8$.

First, let us recall the general invariant theory of finite groups. Let G be a finite subgroup of $GL(n; \mathbb{C})$. Then G acts on the polynomial ring $\mathbb{C}[x_1, \ldots, x_n]$ ($\mathbb{C}[x_k]$ for short) naturally, i.e.,

$$A \cdot f(x_1, \ldots, x_n) = f\left(\sum_{1 \leq j \leq n} A_{1j}x_j, \ldots, \sum_{1 \leq j \leq n} A_{nj}x_j\right),$$

where $f \in \mathbb{C}[x_k]$ and $A = (A_{ij})_{1 \leq i,j \leq n}$. There exists a homogenous system of parameters $\{\theta_1, \ldots, \theta_n\}$ such that the invariant ring $\mathbb{C}[x_k]^G$ is finitely generated free $\mathbb{C}[\theta_1, \ldots, \theta_n]$-module. The invariant ring has the Hironaka decomposition

$$\mathbb{C}[x_k]^G = \oplus_{1 \leq m \leq s} \mathbb{C}[\theta_1, \ldots, \theta_n], \quad g_1 = 1$$

The invariant ring is a graded ring and the dimension formula is defined by

$$\Phi_G(t) = \sum_{d \geq 1} \dim \mathbb{C}[x_k]^G_{td} t^d,$$

where $\mathbb{C}[x_k]^G_{td}$ is the d-th homogeneous part of $\mathbb{C}[x_k]^G$. The dimension formula for the Hironaka decomposition given in the above form is

$$\Phi_G(t) = \frac{1 + t^{\deg(\theta_2)} + \ldots + t^{\deg(\theta_n)}}{(1 - t^{\deg(\theta_1)}) \ldots (1 - t^{\deg(\theta_n)})}.$$

In general, the converse is not true. It is known that we have the identity

$$\Phi_G(t) = \sum_{A \in G} \frac{1}{\det(1 - tA)},$$

This was shown by Molien and is sometimes called Molien series.

Let $\mathcal{W}_{g,k}$ (resp. $\mathcal{S}_{g,k}$) denote the ring generated by the g-th complete (resp. symmetrized) weight enumerators of Type II codes over $\mathbb{Z}/2k\mathbb{Z}$. We denote the d-th homogeneous part of $\mathcal{W}_{g,k}$ (resp. $\mathcal{S}_{g,k}$) by $\mathcal{W}_{g,k}(d)$ (resp. $\mathcal{S}_{g,k}(d)$). Theorem 7 says that $\mathcal{W}_{g,k}$ (resp. $\mathcal{S}_{g,k}$) is a subring of $\mathbb{C}[x_k]^G_{g,k}$ (resp. $\mathbb{C}[x_k]^H_{g,k}$). We have $\dim \mathcal{W}_{g,k}(d) \leq \dim \mathbb{C}[x_k]^G_{g,k}$ and $\dim \mathcal{S}_{g,k}(d) \leq \dim \mathbb{C}[x_k]^H_{g,k}$.

$|G_{1,2}^8| = 1536$. Magma computation shows that we may have invariant ring has the homogenous system of parameters with degrees 8, 8, 8, and 24. We have the dimension formula of the invariant ring is:

$$\Phi_{G_{1,2}^8}(t) = 1 + 4t^8 + 11t^{16} + 25t^{24} + 48t^{32} + \cdots$$

$$= (1 + t^8)(1 + t^{16})(1 + t^{24})$$

With the help of [6], we have $\dim \mathcal{W}_{1,2}(8) = 4$, $\dim \mathcal{V}_{1,2}(16) = 11$ and $\dim \mathcal{W}_{1,2}(24) \geq 23$. At the time of writing, the author doesn’t know if this invariant ring $\mathcal{W}_{1,2}$ can be generated by the weight enumerators of Type II codes or not.
It is proved that the invariant ring $\mathbf{C}[x_k]^{H_{12}}$ coincides with the ring \mathcal{S}_{12} of symmetrized weight enumerators of Type II codes in [2]. The dimension formula is given by

$$
\Phi_{H_{12}}(t) = 1 + 2t^8 + 4t^{16} + 7t^{24} + 10t^{32} + \cdots
= (1 + t^{16})/(1 - t^8)^2(1 - t^{24}).
$$

References

[6] Pless, P., Leon, J. S., Fields, J., All \mathbb{Z}_4 codes of Type II and length 16 are known.

Manabu Oura
Graduate School of Mathematics
Kyushu University
6-10-1, Hakozaki,
Higashi-ku, Fukuoka, 812-8581, Japan
email:ohura@math.kyushu-u.ac.jp